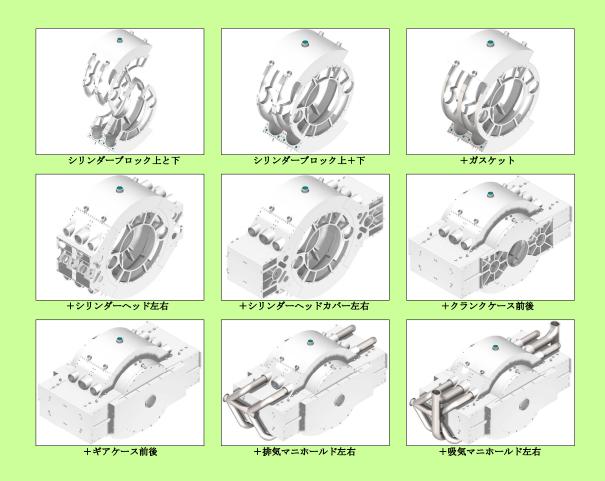

次世代エンジン技術資料

株式会社日本ソフトウェアアプローチ https://www.jsain.co.jp/engine/

1. はじめに

現在、電気自動車 (EV) が地球環境問題により脚光を浴びておりますが、本格的に普及するには課題(充電時間が長い、走行距離が短い、高速走行時のバッテリー消費増大 、電気スタンドが少ない、バッテリーが重い 、EV製造段階での消費電力が一般的ガソリンエンジン車に比較して 2 倍~ 2 . 5 倍、コストが高い、電力供給体制が確立していない等)があります。

また、燃料電池における能力の高さ(燃焼効率が良い、排出ガスがない)が話題となり未来の動力源として有望視されていますが、燃料電池搭載製品が本格的に普及するには 課題(水素ステーションの設置、水素タンクの取り扱い、燃料電池システムを構成するコンポーネントの小型化・高出力化・低コスト化、燃料改質技術の確立と性能・耐久性・ 信頼性の確保等)があります。


産業製品の動力源として、クランク機構(往復直線運動を回転運動に変換)によるエンジンが広く使用され、産業製品における極めて重要な役目を担っていますので、その重要性のために、小型化・軽量化・摩擦損失の低減・振動の低減などの課題を解決すべく、エンジンへの応用を考えた数多くの機構が提案・提唱されてきましたが、現在に至るまでに機構が複雑・摩擦損失が大きい・振動が大きい・気密性が悪い・潤滑性が悪いなどにより実用化(ロータリーエンジンを除く)されておりません。

そこで、エンジンの歴史と動作機構の利点および欠点を徹底的に分析・解析・比較した結果、最適な機構を考案(米国特許US6334423B1:リンク機構)することが 出来ましたので、そのリンク機構(根源特許)をエンジンに応用することにしました。

考案したリンク機構によるエンジン技術は、超小型・超軽量・大出力・高性能・高効率・低燃費・低振動・低騒音・耐久性抜群なエンジンを確実に実現しますので、その技術 によるエンジンの製作詳細図面(2D及び3Dで微細加工・鋳造中子・組立治具・加工治具等を含む)を公開しますので、エンジン製造・エンジン試験(ベンチマークテスト) を実施して有用性を確認して頂き、世界を変える次世代エンジンとして普及させたいと考えています。

2. 主要部品の構成

- 2-1 ハウジング部品・マニホールド部品
 - ・シリンダーブロック上下
 - ・ガスケット左右
 - ・シリンダーヘッド左右
 - ・シリンダーヘッドカバー左右
 - クランクケース前後
 - ギアケース前後
 - ・排気マニホールド左右
 - ・吸気マニホールド左右
 - 締結部品

2-2 往復円弧部品・回転部品・弁機構部品

- ・ピストン内オイル供給管
- ・ピストンオイル供給管
- ・ピストン半割
- ・ローター
- ・ローターリング・ピストンリング
- ・コンロッド・クランクシャフト
- ・カムシャフト
- 弁機構
- 出力シャフト
- ・軸受
- ・取付キー

+ピストンオイル供給管

+ピストン半割

+ローターリング+ピストンリング

+コンロッド+クランクシャフト

+カムシャフト

3. 往復円弧運動を回転運動に変換する機構について

ローターに固定されたピストンが燃焼作用によりローターを揺動駆動させ、ローターアームに接合したローターピンとクランクシャフトピンをコンロッドで連結してクランク シャフトを回転させます。

その際、ローターアームの揺動回転動力は2本のコンロッドにより、クランクシャフトを均等な回転トルクにて振分回転駆動させます。

下図は、2個のローター(動作は逆揺動回転)に固定されたピストン揺動運動からローターアームに接合した4本のローターピンと4本のクランクシャフトピンを4個のコン ロッドで連結して4本のクランクシャフトを振分回転駆動させ、4本のクランクシャフトに取付けたギアにより出力シャフトを連動させて出力回転を取り出す機構です。

特徴としては、軽量・コンパクト・フリクションが少ない・振動が少ない・高速回転化に適する(往復質量が軽い)・安価・出力シャフトが点対称中心(重心が低い)になり ます。

4. 吸気弁機構と排気弁機構の動作について

クランクシャフトに取付けたギアによりカムシャフトに取付けたギアを回転駆動します。

その際、ギア比を1:2にしてカムシャフト回転速度を2分の1に減速します。

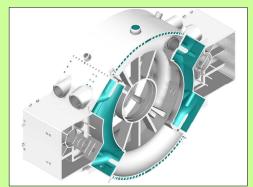
左右カムシャフトの吸気弁開閉カムと排気弁開閉カムにより吸排気バルブを開閉させて次世代エンジンを4サイクルで作動させます。

下図は、2個のローター(動作は逆揺動回転)に固定されたピストン揺動運動からローターアームに接合した4本のローターピンと4本のクランクシャフトピンを4個のコンロッドで連結して4本のクランクシャフトを振分回転駆動させ、4本のクランクシャフトに取付けたギアにより4本のカムシャフトに取付けたギアを回転駆動させて本のカムシャフトの吸気弁開閉カムと排気弁開閉カムにより吸排気バルブを開閉させます。(複動式4気筒ですので、8気筒エンジンに相当します。)

特徴としては、タイミングチェーン伝動機構またはプッシュロッド伝動機構が不要になりますので、軽量・コンパクト・フリクションが少ない・振動が少ない・確実な動作 ・高速回転化に適する・耐久性向上・安価などになります。

5. 冷却について

5-1 シリンダーブロックとシリンダーヘッドの冷却


ウォータージャケットがシリンダーブロックとシリンダーヘッドに対して高密度に設けてありますので、冷却効果が高まります。

また、冷却水が上から下に流れますのでウォーターポンプの負担を軽減します。

下図は、シリンダーブロック内のウォータージャケットとシリンダーヘッド内のウォータージャケットを示します。

供給経路は上部シリンダーブロックウォータージャケット→左右のシリンダーヘッドウォータージャケット→下部シリンダーブロックウォータージャケットになります。 なお、シリンダーブロック内・シリンダーヘッド内ウォータージャケットはシリンダーブロック・シリンダーヘッドの剛性と冷却水の流れを考えた設計になっています。 ウォータージャケットの容量は、シリンダーブロック部で2倍以上・シリンダーヘッド部で5倍以上になりますので、シリンダブロック部・シリンダーヘッド部の温度を 150° c以下(冷却水温度は80° c以下)に制御することが可能になります。

ウォータージャケット

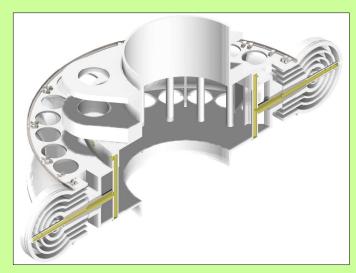
断面1

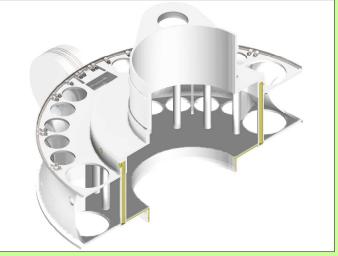
断面 2

断面3

5-2 ローターとピストンの冷却

オイルポンプからローター内部とピストン内部にオイルを圧送して冷却しますので、極めて高い冷却効果が得られます。


ピストンの冷却経路は、クランクケース上部オイル給油口→シリンダーブロック上下オイルギャラリー→ローター内部オイルギャラリー→ローター内ピストンオイル供給 管→ピストンオイル供給管→ピストン内オイル供給管になります。


その際、ピストン内オイル供給管の先端の細い穴からピストンリングとシリンダー壁面による細隙に潤滑オイルを供給します。

ローターの冷却経路は、クランクケース上部オイル給油口→シリンダーブロック上下オイルギャラリー→ローター内部オイルギャラリー→ローター内オイル供給管になり ます。

ピストンは、ピストン内オイル供給管によりピストン内部をオイル強制的冷却法で冷却を行いますので、ピストン頂部の温度を200°c以下に制御することが可能になります。

また、ローターはローター内オイル供給管によりローター内部をオイル噴霧で冷却を行いますので、ローターオイル噴霧冷却とローターの表面積が燃焼部表面積に対して 極めて大きいことによる熱伝導効果により、ピストンの取付部付近でも150° c 以下(オイル温度は90° c 以下)に制御することが可能になります。

6. 潤滑について

6-1 ピストンリングとシリンダーヘッドリングの潤滑

ピストンリングとシリンダー壁面の潤滑は、ピストン先端部の穴より潤滑オイルを供給して潤滑を行います。 シリンダーヘッドリングの潤滑は、ローター側面の穴より潤滑オイルを供給して潤滑を行います。

6-2 流体潤滑

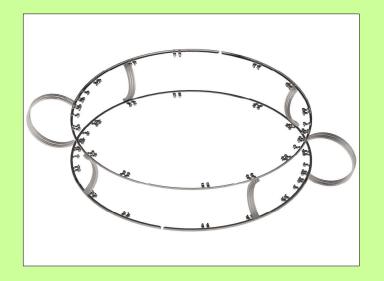
- ①クランクケース上部オイル給油口→クランクギアプレートオイルギャラリー→ローターブッシュ2・クランクシャフトメインブッシュ→クランクシャフトオイルギャラリー→クランクシャフトブッシュ・コンロッド大端部ブッシュ→コンロッド小端部ブッシュの経路により流体潤滑を行います。
- ②クランクケース上部オイル給油口→シリンダーブロック上下オイルギャラリー→ローター内部オイルギャラリー→ローターブッシュオイル供給管→ローターブッシュ1の 経路により流体潤滑を行います。

6-3 飛沫潤滑

- ①クランクケース上部オイル給油口→クランクギアプレートオイルギャラリー→クランクシャフトギア・出力シャフトギア・カムシャフトギア・出力シャフトボールベアリ ングの経路により飛沫潤滑を行います。
- ②クランクケース上部オイル給油口→クランクギアプレートオイルギャラリー→クランクケース上部ギャラリー→シリンダーヘッドカバーオイルギャラリー→弁機構・カム シャフトボールベアリングの経路により飛沫潤滑を行います。
- ③クランクケース上部オイル給油口→シリンダーブロック上下オイルギャラリー→ローター内部オイルギャラリー→ローターリングの経路により飛沫潤滑を行います。 オイルの回収は、クランクケース下部(オイルパン)のオイル排出口により行います。

7. 気密について

ピストンは8本(ガソリンエンジンでは4本)のピストンリング、ローターは2本のローターリング、シリンダーヘッドは12本のシリンダーヘッドリングと2枚のガスケットでシリンダー内のガス漏れを防ぎます。 その際、ローターリングに軟鉄をコーティングしてローター・ピストンリング接合面とシリンダーヘッドリング摺動面の隙間を完全になくします。


ゆえに、シリンダー内を完全に気密します。

右図は2本のローターリングに8本のピストンリングと12本のシリンダーヘッドリング接合を示します。 特徴としては、ローターリングにピストンリングとシリンダーヘッドリングが接合していますので、熱変形によるリング合口部がない状態となります。

ゆえに、シリンダー内のガス漏れを完全に防ぎます。

なお、熱変形によりローターリングにピストンリングとシリンダーヘッドリングが接合しない恐れが生じる ためにローターリングに軟鉄をコーティングして接合を確実な状態に保ちます。

その際、ローターオイル供給管からオイル飛沫によりローターリングを冷却して耐久性を確保します。

8. 4サイクルの行程について

ピストンはトーラス形状のシリンダーを往復運動しますので、往復直線運動ピストンによるレシプロエンジンとは考え方が大きく異なります。 特徴としては、往復動作においてピストンでは内側と外側の往復運動速度が大きく異なりますが、往復直線運動ピストンではどの部分においても往復運動速度が同一になります。

8-1 吸気行程

ピストンの内側と外側では吸気をするための負圧が大きく異なり吸入ガスは負圧の大きい外側に多量に流入します。 また、引張流体の考えにより吸入ガスは外側シリンダー壁の摩擦抵抗で強く加速されますので、自然吸気に対して1.3倍以上の過給効果になります。 (自然吸気エンジンでありながら自然過給エンジンになります。)

さらに、吸気口を可能な限りシリンダーの外側に配置して吸気効率を向上させて過給効果を増幅させます。

8-2 圧縮行程

ピストンの内側と外側では動作速度が大きく異なるのとピストンの遠心力により<mark>圧縮ガスに強い渦流と乱流が発生</mark>します。 また、圧縮流体の考えにより圧縮ガスは外側シリンダー壁の摩擦抵抗で強く加速されますので圧縮ガス速度が増加します。

8-3 燃焼行程

圧縮行程で発生した強い渦流と乱流と加速された圧縮ガスにより燃焼速度が速くなるのと燃焼ガスが外側シリンダー壁の摩擦抵抗により強く加速されますので、ピストン に作用する圧力が増大します。

また、燃焼はピストンの外側で作用しますので出力トルクが増大(5%程度で熱効率も5%程度向上)します。

8-4 排気行程

ピストンの遠心力と排気ガスが外側シリンダー壁の摩擦抵抗により強く加速されますので、排気ガスがシリンダー内に残留することが極めて少なくなります。 また、排気口を可能な限りシリンダーの外側に配置して排気効率を向上させて加速された排気ガスにより燃焼煤を排気します。

9. 熱効率について

熱効率を向上させるには、排気損失・冷却損失・ポンプ損失・機械損失の低減により実現されます。

次世代エンジンでは、排気損失・冷却損失・ポンプ損失・機械損失の低減により、熱効率がガソリンエンジンで50%以上、ディーゼルエンジンで60%以上を実現可能にし ます。

9-1 排気損失

排気損失を低減するには、燃焼速度アップによる燃焼効率向上と圧縮比よりも膨張比を高くするアトキンソンサイクル化が重要になります。

- ①圧縮行程で発生した強い渦流と乱流と加速された圧縮ガスにより、燃焼速度が速くなり、燃焼効率が向上します。
- ②ボア比 (図表 1 参照) が極めて高い (一般的エンジンでは実現困難) ので、相当な排気損失低減効果になります。
- ③燃焼行程はピストン外側で作用しますので膨張比が自然に高く(アトキンソンサイクル化)なります。
- ①~③の理由により、排気損失を20%以上低減します。

9-2 冷却損失

冷却損失を低減するには、燃焼室SV比の低減とシリンダー部表面積を小さくして、放熱を抑制するのが重要になります。

- ①燃焼室SV比は同体積円錐よりも低い値になりますので、現在主流のペントルーフ+バルブリセスピストンより低減されます。
- ②次世代エンジンの最大の特徴は複動式 4 気筒エンジン (基本構成) でありながら単動式 8 気筒エンジンと同様になり、シリンダー数が半分になります。
- ③冷却損失はシリンダーと燃焼室で形成される表面積に比例しますので、複動式により表面積が約50%になります。
- ①~③の理由により、冷却損失を40%以上低減します。

9-3 ポンプ損失

ポンプ損失を低減するには、燃焼力による動力損失を抑えるのと吸排気による吸排気効率を向上させることが重要になります。

- ①吸気行程におけるピストン動力は、燃焼行程ピストンの動力→ピストンピン→コンロッド→クランクピン→クランクシャフト→フライホイール→クランクシャフト→クランクピン→コンロッド→ピストンピン→吸気行程ピストンの動力伝達経路により行われ、相当な燃焼動力損失になりますが、ローターとピストンが一体の次世代エンジンでは、動力伝達経路はなくなり、燃焼動力損失はなくなります。
- ②排気行程におけるピストン動力は、燃焼行程ピストンの動力→ピストンピン→コンロッド→クランクピン→クランクシャフト→フライホイール→クランクシャフト→クランクピン→コンロッド→ピストンピン→排気行程ピストンの動力伝達経路により行われ、相当な燃焼動力損失になりますが、ローターとピストンが一体の次世代エンジンでは、動力伝達経路はなくなり、燃焼動力損失はなくなります。
- ③吸気口はピストン中心位置の外側に配置されるのと吸気口による過流発生が必要でない(ピストンの内側と外側の負圧が異なる)ので、吸入抵抗が減少して吸気効率が向 上します。
- ④排気口はピストン中心位置の外側に配置されるので排気抵抗が減少して排気効率が向上します。
- ①~④の理由により、ポンプ損失を20%以上低減します。

9-4 機械損失

機械損失を低減するには、フリクションロスの低減とピストン動作抵抗の削減が重要になります。

- ①吸気行程・圧縮行程・燃焼行程・排気行程のシリンダー圧力と揺動回転部による慣性トルクがピストンに同時に作用しますので、シリンダー圧力と慣性トルクとの合力となり、コンロッド荷重(詳細は力学について)が減衰されて、フリクションが低減されます。
- ②コンロッドが4本(従来の8気筒なら8本)になりますので、フリクションが半減します。
- ③クランクピン・クランクジャーナル部が半分になりますので、フリクションが半減します。
- ④クランクピン回転半径が半分程度(ローターアーム揺動半径が半分程度)になりますので、クランクピン・クランクジャーナルの径を67%程度に小径化することが可能 になり、負荷時におけるフリクションは半径の1.5乗に比例しますから、0.67の1.5乗により、フリクションが45%低減されます。
- ⑤クランクピン・クランクジャーナル幅が80%に縮小されますので、フリクションが20%低減されます。
- ⑥ピストン側圧によるフリクションがなくなります。
- ⑦オイルリングが不要になりますので、フリクションが30%低減されます。
- ⑧タイミングチェーン・プッシュロッドが不要になりますので、フリクションが激減します。
- ⑨ピストン形状によりピストンが下降する際の抵抗が相当ありますが、当該ピストンではなくなります。
- ⑩当該ピストンが下降する際のオイル攪拌抵抗がなくなります。
- ⑪圧縮行程におけるピストン動力は、燃焼行程ピストンの動力→ピストンピン→コンロッド→クランクピン→クランクシャフト→フライホイール→クランクシャフト→クランクピン→コンロッド→ピストンピン→圧縮行程ピストンの動力伝達経路により行われ、相当な燃焼動力損失になりますが、ローターとピストンが一体の次世代エンジンでは動力伝達経路はなくなり、燃焼動力損失はなくなります。
- ①~⑪の理由により、機械損失を80%以上低減します。

(図表1) エンジン種類 ボア 行程 ボア比 ガソリンエンジン 82.161mm 1.867 44.0mm ディーゼルエンジン 60.0mm 160. 487mm 2,674 ディーゼルエンジン 90.0mm 240, 151mm 2.668 ディーゼルエンジン 160.0mm 401.027mm 2,506 ディーゼルエンジン 320.0mm 802.054mm 2,506 ディーゼルエンジン 480.0mm 1200. 184mm 2,500 ディーゼルエンジン 600.0mm 1609. 431mm 2,682

10. 力学について

10-1 往復質量

往復質量(図表2参照)が軽いので、高性能(高回転)になります。

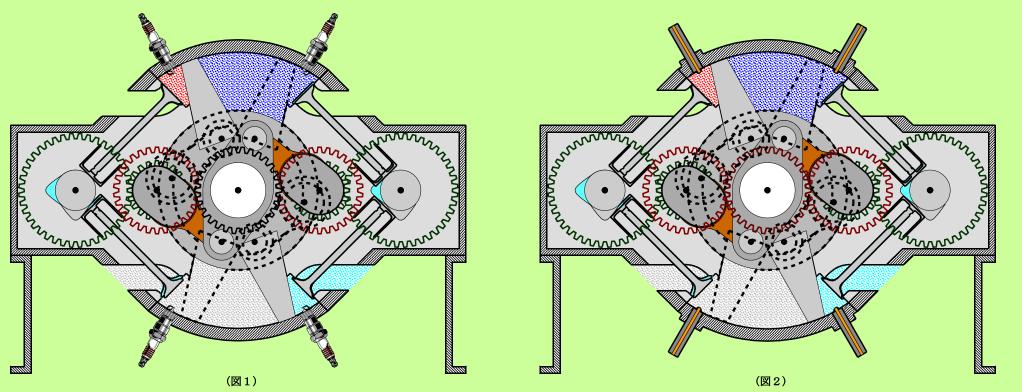
(*) 1 個あたりのローターで 4 気筒に相当

(図表2)

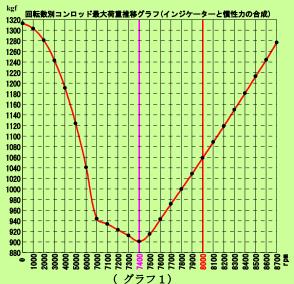
	(C)H=	(四秋 2)		
エンジン種類	往復質量(*)	1 気筒換算		
ボア44ガソリンエンジン	267. 120g	66. 780g		
ボア60ディーゼルエンジン	1, 112. 800g	278. 200g		
ボア90ディーゼルエンジン	3, 201. 180g	800. 295g		
ボア160ディーゼルエンジン	14, 945. 790g	3, 736. 448g		
ボア320ディーゼルエンジン	113, 585. 250g	28, 396. 313g		
ボア480ディーゼルエンジン	373, 411. 880g	93, 352. 970g		
ボア600ディーゼルエンジン	750, 718. 370g	187, 679. 593g		

10-2 コンロッド荷重

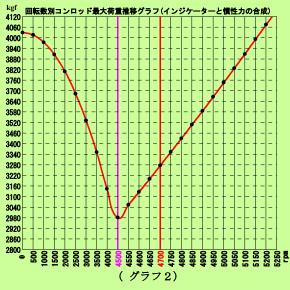
コンロッド荷重は、吸気行程・圧縮行程・燃焼行程・排気行程のシリンダー圧力と揺動回転部による慣性トルクの合成応力とピストン揺動中心半径÷ローターアーム半径 ÷ 2 により求められます(コンロッド荷重が最大になるのは、揺動回転部減速慣性トルクと圧縮行程圧力の合成時になります)。

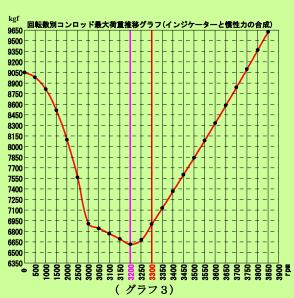

図1・図2・グラフ1・グラフ2・グラフ3・グラフ4・グラフ5・グラフ6・グラフ7を参照すると、起動してから連続最大回転数まで低下してから上昇します。 ゆえに、連続最大回転数の時、コンロッド荷重は最小(最大効率)になります。

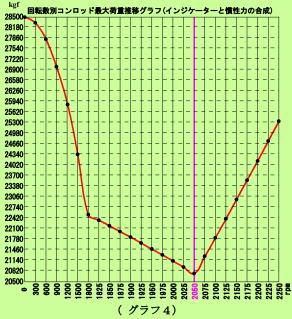
図表3により、ガソリンエンジンよりディーゼルエンジンの方がより高性能『これは特質すべき現象』になります。

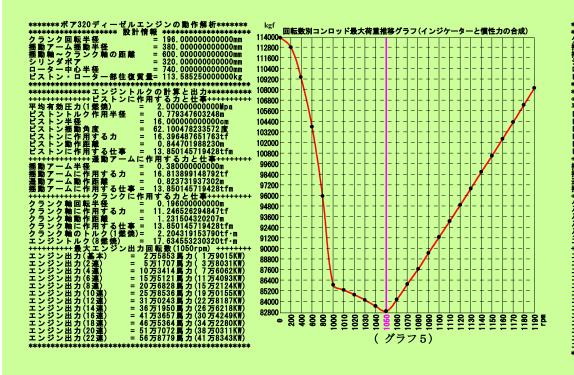

これは、ディーゼルエンジンの方がガソリンエンジンより燃焼圧力・圧縮圧力が高くなるために起因します。

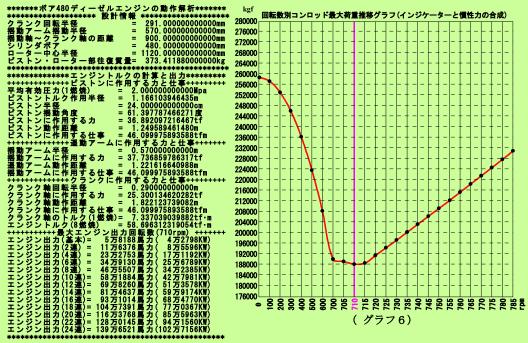
ロータートルク=(燃焼圧力+圧縮圧力+吸気圧力+排気圧力)×(ピストン揺動中心半径m÷1)+慣性トルク


コンロッド荷重=ロータートルク÷(ピストン揺動中心半径m÷1)÷2(コンロッドが2個)×(ピストン揺動中心半径÷ローターアーム)

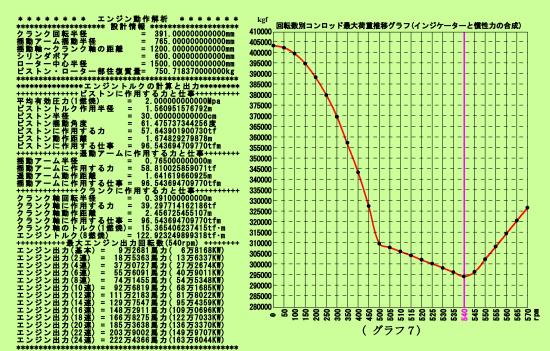







********ボア90ディーゼルエ ************************************	: ンジンの動作解析*******
クランク回転半径	= 58.50000000000mm
揺動アーム揺動平径 揺動軸~クランク軸の距離	= 115.000000000000mm = 180.00000000000mm
援動軸~クランク軸の距離 シリンダボア ローター中心半径	= 90.00000000000mm
ローダー中心干性 ピストン・ローター部往復習	= 225.000000000000mm == 3.20118000000kg

************************************	・クの計算と出力********* ■用する力と仕事+++++++
平均有効圧力(1燃焼) = ピストントルク作用半径 =	L. CCCCCCCCCCCMpu
ピストシ半径 """ =	= 4.50000000000cm
	= 61.153973569516度 = 1296.987792766428kgf
ピストン動作距離 =	O. 249902900393m
ピストンに作用する仕事 = ++++++++++++	
揺動アーム半径 =	O. 115000000000m
揺動アームに作用するカ = 遥動アーム動作距離 =	
探動アールに作用する仕事 =	= 324.121011186673kgfm
####################################	■用する力と仕事++++++++ ■ 0.058500000000m
クランク軸に作用するカ =	= 881.802753680384kgf
クララシンジンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシン	
クランク軸のトルク(1燃焼)= エンジントルク(8燃焼) =	= 51.585461090302kgf·m
- ************************************	
エンジン出力(基本) = エンジン出力(2連) =	
・主ジジン出分(4種)	: 7606属力(5594KW)
エンジン出力(6連) = エンジン出力(8連) =	
エンジン出分(10連) =	:1万9015属力(1万3985KW)
エンシン出力 カ(き連) = エンシンン出力力(き連) = エンンジン出力力(き運) = エンンジン出力力(8運) = エンンジン出力力(10運) = エエンジン出力力(14運) = エエンジン出力(18運) = エエンジン出力(18運) = エエンジン出力(18運)	
エンジン出分(16蓮) =	: 3 万 0 4 2 4 馬 力 (2 万 2 3 7 7 KW)
エンジン出力(18連) = エンジン出力(20連) =	
ェンジン田分(22蓮) =	: 4万1833萬万(3万0768KW)
**************************************	********



			(図表3 <u>)</u>
エンジン種類	連続最大回転数	最大回転数	平均ピストン速度
ボア44ガソリンエンジン	7400rpm	8000rpm	21.9097m/s
ボア60ディーゼルエンジン	4500rpm	4700rpm	25.1429m/s
ボア90ディーゼルエンジン	3200rpm	3300rpm	26.4166m/s
ボア160ディーゼルエンジン	2050rpm	2050rpm	27.4035m/s
ボア320ディーゼルエンジン	1050rpm	1050rpm	28.0719m/s
ボア480ディーゼルエンジン	710rpm	710rpm	28.4043m/s
ボア600ディーゼルエンジン	540rpm	540rpm	28.7015m/s

10-3 クランクシャフト荷重

クランクシャフトには、1本のコンロッドによる応力が加わりますので、クランクシャフト荷重とクランクシャフト回転力以外には力が加わりません。 ゆえに、クランクシャフトの偶力と捻じる力は発生しません。

10-4 出力トルク

図表4の解析結果から、出力シャフトには、負のトルクが殆んど発生しません (4連以上なら発生しません)。

ゆえに、出力シャフトによるねじり振動が殆んど発生しません (4連以上なら発生しません)。

ねじり振動の大きな要因は、燃焼時の正トルクとピストン加速時慣性力の負トルクになりますので、燃焼時の正トルクと加速時慣性力の負トルクを合成したトルクでは、 負のトルクが殆んど発生しません。

また、圧縮時の負トルクとピストン減速時慣性力の正トルクになりますので、圧縮時の負トルクとピストン減速時慣性力の正トルクを合成したトルクでは、負のトルクが 殆んど発生しません。

(図表4)

					(2) (2)
エンジン種類	単体トルク(最大/最小)	基本トルク(最大/最小)	2連トルク(最大/最小)	4連トルク(最大/最小)	6 連トルク(最大/最小)
ボア44ガソリンエンジン	29.72kgf·m/ -2.70kgf·m	42.49kgf·m/ -2.87kgf·m	68.20kgf·m/ -2.37kgf·m	117.12kgf·m/ 28.25kgf·m	160.87kgf·m/ 48.73kgf·m
ボア60ディーゼルエンジン	192.17kgf·m/-15.98kgf·m	252.09kgf·m/ -8.41kgf·m	449.39kgf·m/ -7.89kgf·m	746. 22kgf·m/174. 65kgf·m	1016.31kgf·m/ 295.06kgf·m
ボア90ディーゼルエンジン		803.78kgf·m/-20.10kgf·m	1466.67kgf·m/ -0.55kgf·m	2477.70kgf·m/610.07kgf·m	3379.53kgf·m/1026.99kgf·m
ボア160ディーゼルエンジン		4.087tf·m/ -0.072tf·m	7.605tf·m/ 0.133tf·m	13.022tf·m/ 3.379tf·m	17.773tf·m/ 5.651tf·m
ボア320ディーゼルエンジン		32.744tf·m/ -0.556tf·m	60.837tf·m/ 1.174tf·m	104.345tf·m/ 27.207tf·m	142.432tf·m/ 45.490tf·m
ボア480ディーゼルエンジン		108.452tf⋅m/ -1.949tf⋅m	201.989tf·m/ 3.642tf·m	347.232tf·m/90.871tf·m	474.430tf·m/ 152.336tf·m
ボア600ディーゼルエンジン		228.638tf·m/ -4.151tf·m	425.685tf·m/ 6.696tf·m	729.566tf·m/188.122tf·m	996.093tf·m/ 315.287tf·m
エンジン種類	8連トルク(最大/最小)	10連トルク(最大/最小)	12連トルク(最大/最小)	14連トルク(最大/最小)	16連トルク(最大/最小)
ボア44ガソリンエンジン	209.61kgf·m/ 67.07kgf·m	261.30kgf·m/ 84.68kgf·m	314.23kgf·m/ 103.53kgf·m	365.20kgf·m/ 118.92kgf·m	
ボア60ディーゼルエンジン	1322.32kgf·m/ 404.44kgf·m	1655.28kgf·m/ 512.70kgf·m	1986.38kgf·m/624.58kgf·m	2309.39kgf·m/719.22kgf·m	2637.68kgf·m/836.50kgf·m
ボア90ディーゼルエンジン	4397. 21kgf·m/1405. 11kgf·m	5500.94kgf·m/1779.01kgf·m	6601.70kgf·m/2165.85kgf·m	7675.70kgf·m/2495.22kgf·m	8766. 21kgf·m/2897. 67kgf·m
ボア160ディーゼルエンジン	23.128tf·m/ 7.718tf·m	28.935tf·m/ 9.761tf·m	34.720tf·m/ 11.873tf·m	40.363tf·m/ 13.687tf·m	46.108tf·m/ 15.869tf·m
ボア320ディーゼルエンジン	185.341tf·m/ 62.111tf·m	231.867tf·m/ 78.543tf·m	278.222tf·m/ 95.532tf·m	323.446tf·m/ 110.139tf·m	369.477tf·m/ 127.672tf·m
ボア480ディーゼルエンジン	617.387tf·m/ 207.980tf·m	771.948tf·m/ 262.982tf·m	926.421tf·m/ 319.926tf·m	1077.165tf·m/ 368.770tf·m	1230.521tf·m/ 427.573tf·m
ボア600ディーゼルエンジン	1296.116tf·m/ 430.661tf·m	1620.988tf·m/ 544.694tf·m	1945.283tf·m/ 662.695tf·m	2261.701tf·m/ 763.863tf·m	2583.500tf·m/ 885.804tf·m
エンジン種類	18連トルク(最大/最小)	20連トルク(最大/最小)	22連トルク(最大/最小)	24連トルク(最大/最小)	最大回転数
ボア44ガソリンエンジン					8000rpm
ボア60ディーゼルエンジン	2971.17kgf·m/ 938.61kgf·m	3299.38kgf·m/1044.54kgf·m			4700rpm
ボア90ディーゼルエンジン	9875. 28kgf·m/3252. 01kgf·m	10966.80kgf·m/3620.37kgf·m	12018.99kgf·m/3979.74kgf·m		3300rpm
ボア160ディーゼルエンジン	51.942tf·m/ 17.824tf·m	57.681tf·m/ 19.837tf·m	63.214tf·m/ 21.804tf·m		2125rpm
ボア320ディーゼルエンジン	416.230tf·m/ 143.403tf·m	462.224tf·m/ 159.609tf·m	506.562tf·m/ 175.428tf·m		1120rpm
ボア480ディーゼルエンジン	1385.927tf·m/ 480.022tf·m	1539.171tf·m/ 534.487tf·m	1686.886tf·m/587.455tf·m	1840.587tf·m/ 641.903tf·m	710rpm
ボア600ディーゼルエンジン	2910.112tf·m/ 994.562tf·m	3231.822tf·m/1107.278tf·m	3541.895tf·m/1217.078tf·m	3864.632tf·m/1329.885tf·m	540rpm

11. 振動・騒音について

- ・ピストン側圧がありませんので、燃焼力・圧縮力・慣性力による側圧振動がありません。
- ・多気筒による偶力がありませんので、燃焼力・圧縮力・慣性力による偶力振動がありません。
- ・燃焼時の正トルクとピストン加速時慣性力の負トルクによるねじれ振動は、燃焼時と減速時慣性力の正トルクと加速時慣性力の負トルクを合成したトルク(図表4を参照) では、殆んど負トルクは発生しません(4連以上での負トルクは発生しません)。
- ゆえに、ねじれ振動は、殆んど発生しません(4連以上でのねじり振動は発生しません)。
- ・ピストン側圧がありませんので、ピストンとシリンダーの衝突騒音が発生しません。
- ・バルブリフターと吸排気バルブの隙間をバルブリフタースプリングにより、常に密着してありますので、バルブリフターと吸排気バルブの衝突騒音は発生しません。

12. 耐久性について

耐久性は、極めて重要な因子であり、設計する上での最重要課題になります。

12-1 すべり軸受

すべり軸受は、極めて重要な部品であり適切に設計・製造されれば、半永久的に使用可能です。

このすべり軸受は、偶力による片当たりの影響と潤滑オイルの温度上昇により、焼き付きが発生します。

潤滑オイルの温度上昇を防ぐために、クランクシャフトシャフトのクランクピンとクランクジャーナルを中空(剛性を考慮した設計)にしました。

また、クランクシャフトには、偶力が発生しませんので、偶力による片当たりは発生しません。

なお、組付け不良を防ぐために、すべてブッシュタイプにしました。

(クランクシャフトの冷却・オイル劣化防止・カムシャフト組付位置決めのために、クランクケースの上部にブローバイガス熱風排出口を設けます。)

図表5は、PV値(動的最大荷重で最大回転数における)を示します。

(図表5)

エンジン種類	コンロッド大端部ブッシュ	クランクメインブッシュ	クランクブッシュ	ローターブッシュ 1	ローターブッシュ 2
ボア44ガソリンエンジン	32.43MPa*10.89m/s=353.16	31.06MPa*10.89m/s=338.24	28.85MPa*10.05m/s=289.94	3.78MPa* 7.22m/s=27.29	3.19MPa* 6.83m/s=21.79
ボア60ディーゼルエンジン	31.30MPa*11.07m/s=346.49	30.16MPa*11.07m/s=333.87	30.16MPa*11.07m/s=333.87	4.58MPa* 8.97m/s=41.08	4.39MPa* 8.97m/s=39.38
ボア90ディーゼルエンジン	31.43MPa*11.40m/s=358.30	29.77MPa*11.40m/s=339.38	29.77MPa*11.40m/s=339.38	5.08MPa* 9.22m/s=46.84	4.42MPa* 8.92m/s=39.43
ボア160ディーゼルエンジン	30.52MPa*11.80m/s=360.14	31.34MPa*11.80m/s=369.81	31.34MPa*11.80m/s=369.81	6.25MPa* 9.70m/s=60.63	4.56MPa* 9.55m/s=43.55
ボア320ディーゼルエンジン	32.62MPa*11.76m/s=383.61	32.82MPa*11.76m/s=385.96	34.04MPa*11.54m/s=392.82	5.94MPa* 9.86m/s=58.57	4.89MPa* 9.86m/s=48.22
ボア480ディーゼルエンジン	33.52MPa*11.67m/s=391.18	33.18MPa*11.67m/s=387.21	34.00MPa*11.52m/s=391.68	7.51MPa* 9.99m/s=75.02	4.75MPa* 9.99m/s=47.45
ボア600ディーゼルエンジン	31.92MPa*11.87m/s=378.89	32.17MPa*11.87m/s=381.86	32.17MPa*11.87m/s=381.86	7.65MPa*10.12m/s=77.42	4.83MPa*10.12m/s=48.88

12-2 ころがり軸受

ころがり軸受は、専業メーカーによる定格荷重が定められていますので、決められた計算方法により耐用時間が算出できます。

耐用年数は、最大回転で動作しても30年以上になります。

図表6は、耐用時間(最大回転数における)を示します。

**3は三乗、Kは回転係数(1000000÷最大回転数÷60)

(図表6)

TO SOUTH THE THE PROPERTY OF T	· X/(= 143X · 00)		(四 <u>级 0 /</u>		
エンジン種類	出力シャフト軸受(基本)の耐用時間	出力シャフト軸受(最大連数)の耐用時間	カムシャフト軸受の耐用時間		
ボア44ガソリンエンジン	CP=(320/1)**3, K=1.9 〈62259200時間〉	CP=(635/1.5)**3, K=1.9 <144145470時間>	CP=(455/10)**3, K=3.8 〈 357946時間〉		
ボア60ディーゼルエンジン	CP=(625/4)**3, K=3.2 <12207031時間>	CP=(1380/9.1)**3, K=3.2 〈 11159970時間〉	CP=(740/17.5)**3, K=6.3 〈 476344時間〉		
ボア90ディーゼルエンジン	CP=(1300/12)**3, K=5.1 〈 6484201時間〉	CP=(2750/32)**3, K=5.1 〈 3236818時間〉	CP=(1440/37.5)**3, K=10.1< 571893時間>		
ボア160ディーゼルエンジン	CP=(2440/33)**3, K=8.1 〈 3274255時間〉	CP=(5660/158)**3, K=8.1 〈 372359時間〉	CP=(2540/75)**3, K=16.3 〈 633147時間〉		
ボア320ディーゼルエンジン	CP=(10900/240)**3, K=15.9 < 1489507時間>	CP=(48400/1230)**3, K=15.9 〈 968763時間〉	CP=(8850/250)**3, K=31.7 <1406272時間>		
ボア480ディーゼルエンジン	CP=(24900/784)**3, K=23.5 〈 752864時間〉	CP=(113400/4240)**3, K=23.5< 449580時間>	CP=(15700/500)**3, K=46.9<1451981時間>		
ボア600ディーゼルエンジン	CP=(43500/1590)**3, K=30.8< 630707時間>	CP=(186400/8650)**3, K=30.8< 308206時間>	CP=(17000/750)**3,K=61.7< 718533時間>		

12-3 限界荷重

限界荷重に対しての安全係数は、エンジン設計での重要な要素で、概ね8倍以上になるように設計しております。 図表7は、安全係数(動的最大荷重における)を示します。

ローターピン、コンロッド、クランクシャフトは、起動時安全係数~最大回転時安全係数を示す

(図表7)

<u>ローグーとストラフト、フランフマイン F16、起動的女王体数「取八回報的女王体数とかり」</u>										
エンジン種類	シリンダー	シリンダーヘッド	ピストン	ローター	ローターピン	コンロッド	クランクシャフト			
ボア44ガソリンエンジン	23. 186	103. 570	36. 170	67. 814	15.044~18.511	7. 436~9. 150	48.896~60.161			
ボア60ディーゼルエンジン	14. 858	54. 726	28. 569	35. 310	10.083~12.616	7. 169~8. 969	34. 480~43. 140			
ボア90ディーゼルエンジン	16. 794	41. 872	29.710	28. 255	10.396~13.543	7. 456~9. 713	33.827~44.066			
ボア160ディーゼルエンジン	15. 324	37. 193	37. 136	27. 977	9.762~13.307	6.708~9.143	31.943~43.542			
ボア320ディーゼルエンジン	17. 720	27. 157	35. 367	26. 112	9.963~13.619	6.809~9.308	29. 038~39. 695			
ボア480ディーゼルエンジン	15. 870	22. 347	24. 963	22. 524	10.599~14.532	6.987~9.579	28. 542~39. 133			
ボア600ディーゼルエンジン	15. 920	21. 784	30.808	20. 275	10.619~14.503	6.814~9.306	32. 328~44. 149			

12-4 限界トルク

限界トルクに対しての安全係数は、エンジン設計での重要な要素で、概ね8倍以上になるように設計しております。 図表8は、安全係数(出力トルクにおける)を示します。 なお、出力シャフトには、ねじれトルクが殆んど発生しないとします。

(*) 単体~最大連数の最小安全係数~最大安全係数

(図表8)

エンジン種類	ロータートルク(最大)	クランクシャフトトルク	出力ギアトルク	出力シャフトトルク(*)
ボア44ガソリンエンジン	31. 329	66. 407	11. 089	9. 279~12. 135
ボア60ディーゼルエンジン	26. 312	46. 644	14. 727	8.158~ 8.602
ボア90ディーゼルエンジン	23. 583	45. 281	14. 438	8.190~ 8.433
ボア160ディーゼルエンジン	19. 631	41. 764	13.714	7.858~ 8.269
ボア320ディーゼルエンジン	19. 651	36. 664	13. 675	8.019~ 8.337
ボア480ディーゼルエンジン	21. 420	37. 232	13. 866	8.159~ 8.345
ボア600ディーゼルエンジン	22. 705	42. 593	14. 713	8.014~ 8.281

13. エンジン諸元について

13-1 ボア44ガソリンエンジン (シリンダ径=44mm×行程=82.161mm、ボア比=1.867、圧縮比=10.540) 図表9にボア44ガソリンエンジンの諸元を示します。

(図表9)

製品コード	構成	排気量	連続最大回転数	最大回転数	出力(馬力)	出力(KW)	幅(mm)	高さ(mm)	長さ(mm)	質量(kg)
G44-01-02	単体	500сс	7600rpm	8800rpm	113	83	382. 0	250. 0	143. 5	5. 424
G44-01-04	基本	998cc	7300rpm	8000rpm	206	151	425. 0	250. 0	242.0	10. 463
G44-02-08	2 連	1996cc	7300rpm	8000rpm	412	303	425. 0	250. 0	452.0	21. 172
G44-04-16	4 連	3992cc	7300rpm	8000rpm	825	607	425. 0	250. 0	872.0	44. 106
G44-06-24	6 連	5988cc	7300rpm	8000rpm	1, 238	911	425. 0	250. 0	1, 291. 0	68.006
G44-08-32	8連	7984cc	7300rpm	8000rpm	1,651	1, 214	425. 0	250. 0	1,710.0	93. 790
G44-10-40	10連	9980cc	7300rpm	8000rpm	2,064	1,518	425. 0	250. 0	2, 130. 0	120. 129
G44-12-48	12連	11976cc	7300rpm	8000rpm	2, 477	1,822	425. 0	250. 0	2, 549. 0	148.074
G44-14-56	14連	13972cc	7300rpm	8000rpm	2, 890	2, 126	425. 0	250.0	2, 968. 0	178. 652

13-2 ボア60ディーゼルエンジン(シリンダ径=60mm×行程=160.487mm、ボア比=2.674、圧縮比=24.276) 図表10にボア60ディーゼルエンジンの諸元を示します。

(図表10)

製品コード	構成	排気量	連続最大回転数	最大回転数	出力(馬力)	出力(KW)	幅(mm)	高さ(mm)	長さ(mm)	質量(kg)
D60-01-02	単体	1815cc	4700rpm	5250rpm	450	331	655. 0	416. 0	204. 0	22. 045
D60-01-04	基本	3630сс	4500rpm	4700rpm	805	592	710. 0	416. 0	375.0	43. 076
D60-02-08	2 連	7260cc	4500rpm	4700rpm	1,611	1, 185	710. 0	416. 0	709.0	88. 508
D60-04-16	4連	14520сс	4500rpm	4700rpm	3, 223	2, 371	710. 0	416. 0	1, 374. 0	185. 587
D60-06-24	6 連	21780сс	4500rpm	4700rpm	4, 835	3, 556	710. 0	416. 0	2, 040. 0	287. 575
D60-08-32	8連	29040сс	4500rpm	4700rpm	6, 447	4, 742	710. 0	416. 0	2, 705. 0	396. 604
D60-10-40	10連	36300сс	4500rpm	4700rpm	8, 059	5, 927	710. 0	416. 0	3, 371. 0	504. 608
D60-12-48	12連	43560cc	4500rpm	4700rpm	9, 671	7, 113	710. 0	416. 0	4, 036. 0	626. 785
D60-14-56	14連	50820сс	4500rpm	4700rpm	11, 282	8, 298	710. 0	416. 0	4, 702. 0	738. 567
D60-16-64	16連	58080сс	4500rpm	4700rpm	12, 894	9, 484	710. 0	416.0	5, 368. 0	867. 299
D60-18-72	18連	65340cc	4500rpm	4700rpm	14, 506	10, 669	710. 0	416. 0	6, 034. 0	1, 012. 198
D60-20-80	20連	72600cc	4500rpm	4700rpm	16, 118	11, 855	710. 0	416.0	6, 700. 0	1, 150. 402

13-3 ボア90ディーゼルエンジン (シリンダ径=90mm×行程=240.15mm、ボア比=2.66、圧縮比=24.80) 図表11にボア90ディーゼルエンジンの諸元を示します。

										(凶衣エエ)
製品コード	構成	排気量	連続最大回転数	最大回転数	出力(馬力)	出力(KW)	幅(mm)	高さ(mm)	長さ(mm)	質量(kg)
D90-01-04	基本	12. 22 រ៉ះ	3200rpm	3300rpm	1,901	1, 398	1,058	616	538	129. 157
D90-02-08	2 連	24. 44 %	3200rpm	3300rpm	3, 803	2, 797	1,058	616	1,023	266. 141
D90-04-16	4 連	48. 88 %	3200rpm	3300rpm	7, 606	5, 594	1,058	616	1, 990	554. 925
D90-06-24	6 連	73. 32 រ៉ះ	3200rpm	3300rpm	11, 409	8, 391	1,058	616	2, 957	868. 298
D90-08-32	8連	97. 76 ነ %	3200rpm	3300rpm	15, 212	11, 188	1,058	616	3, 924	1, 192. 723
D90-10-40	10連	122. 20 %	3200rpm	3300rpm	19, 015	13, 985	1,058	616	4, 891	1, 539. 126
D90-12-48	12連	146. 64 %	3200rpm	3300rpm	22, 818	16, 782	1,058	616	5, 858	1, 912. 446
D90-14-56	14連	171. 08 ነ %	3200rpm	3300rpm	26, 621	19, 580	1,058	616	6, 825	2, 270. 743
D90-16-64	16連	195. 52 %	3200rpm	3300rpm	30, 424	22, 377	1,058	616	7, 792	2, 630. 659
D90-18-72	18連	219. 96 %	3200rpm	3300rpm	34, 227	25, 174	1,058	616	8, 759	3, 061. 174
D90-20-80	20連	244. 40 %	3200rpm	3300rpm	38, 030	27, 971	1,058	616	9, 726	3, 495. 705
D90-22-88	22連	268. 84 %	3200rpm	3300rpm	41, 833	30, 768	1,058	616	10, 693	3, 979. 024

(図書11)

13-4 ボア160ディーゼルエンジン (シリンダ径=160mm×行程=401.02mm、ボア比=2.50、圧縮比=24.66) 図表 1 2 にボア160ディーゼルエンジンの誘元を示します

図表12にホテ160ティーセルエンシンの確元を示します。 (図表12										
製品コード	構成	排気量	連続最大回転数	最大回転数	出力(馬力)	出力(KW)	幅(mm)	高さ(mm)	長さ(mm)	質量(kg)
D160-01-04	基本	64.5 %	2050rpm	2050rpm	6, 291	4, 627	1, 763	1, 008	922	542. 392
D160-02-08	2 連	129. 0 ነ %	2050rpm	2050rpm	12, 583	9, 255	1, 763	1, 008	1,750	1, 117. 776
D160-04-16	4連	258.0 %	2050rpm	2050rpm	25, 167	18, 511	1, 763	1, 008	3, 400	2, 392. 124
D160-06-24	6 連	387. 0 ነ %	2050rpm	2050rpm	37, 751	27, 766	1, 763	1, 008	5,050	3, 748. 652
D160-08-32	8連	516.0%%	2050rpm	2050rpm	50, 335	37, 022	1, 763	1, 008	6, 700	5, 193. 927
D160-10-40	10連	645. 0 ነ %	2050rpm	2050rpm	62, 919	46, 278	1, 763	1, 008	8, 350	6, 711. 773
D160-12-48	12連	774.0%%	2050rpm	2050rpm	75, 503	55, 533	1, 763	1, 008	10,000	8, 381. 859
D160-14-56	14連	903.01%	2050rpm	2050rpm	88, 087	64, 789	1, 763	1,008	11,650	9, 977. 565
D160-16-64	16連	1032.0 %	2050rpm	2050rpm	100, 671	74, 044	1, 763	1, 008	13, 300	11, 529. 116
D160-18-72	18連	1161.0%%	2050rpm	2050rpm	113, 255	83, 300	1, 763	1, 008	14, 950	13, 551. 615
D160-20-80	20連	1290.0%	2050rpm	2050rpm	125, 839	92, 556	1, 763	1, 008	16,600	15, 631. 389
D160-22-88	22連	1419.0 %	2050rpm	2050rpm	138, 423	101, 811	1, 763	1, 008	18, 250	17, 475. 149

13-5 ボア320ディーゼルエンジン (シリンダ径=320mm×行程=802.05mm、ボア比=2.50、圧縮比=24.86) 図表13にボア320ディーゼルエンジンの諸元を示します。

図表13にホア	32077	ーセルエン	′シンの諸元を示し	ノます。						(図表13)
製品コード	構成	排気量	連続最大回転数	最大回転数	出力(馬力)	出力(KW)	幅(mm)	高さ(mm)	長さ(mm)	質量(kg)
D320-01-04	基本	516 %	1050rpm	1050rpm	25, 853	19, 015	3, 458	1, 952	1,726	3, 785. 532
D320-02-08	2 連	1032 %	1050rpm	1050rpm	51, 707	38, 031	3, 458	1, 952	3, 280	7, 916. 596
D320-04-16	4連	2064 %	1050rpm	1050rpm	103, 414	76, 062	3, 458	1, 952	6, 380	16, 762. 704
D320-06-24	6 連	3096 %	1050rpm	1050rpm	155, 121	114, 093	3, 458	1, 952	9, 480	26, 427. 629
D320-08-32	8連	4128 %	1050rpm	1050rpm	206, 828	152, 124	3, 458	1, 952	12,580	36, 519. 264
D320-10-40	10連	5160 %	1050rpm	1050rpm	258, 536	190, 155	3, 458	1, 952	15, 680	47, 266. 543
D320-12-48	12連	6192 %	1050rpm	1050rpm	310, 243	228, 187	3, 458	1, 952	18, 780	59, 665. 931
D320-14-56	14連	7224 %	1050rpm	1050rpm	361, 950	266, 218	3, 458	1, 952	21,880	71, 341. 137
D320-16-64	16連	8256 👯	1050rpm	1050rpm	413, 657	304, 249	3, 458	1, 952	24, 980	82, 125. 540
D320-18-72	18連	9288 👯	1050rpm	1050rpm	465, 364	342, 280	3, 458	1, 952	28, 080	96, 458. 176
D320-20-80	20連	10320 %	1050rpm	1050rpm	517, 072	380, 311	3, 458	1, 952	31, 180	111, 328. 570
D320-22-88	22連	11352 👯	1050rpm	1050rpm	568, 779	418, 343	3, 458	1, 952	34, 270	127, 222. 649

13-6 ボア480ディーゼルエンジン (シリンダ径=480mm×行程=1200.18mm、ボア比=2.50、圧縮比=24.86) 図表14にボア480ディーゼルエンジンの諸元を示します。

(図表14)

製品コード	構成	排気量	連続最大回転数	最大回転数	出力(馬力)	出力(KW)	幅(mm)	高さ(mm)	長さ(mm)	質量(kg)
D480-01-04	基本	1737 ¦ %	710rpm	710rpm	58, 188	42, 798	5, 184	2, 916	2, 560	11, 852. 249
D480-02-08	2 連	3474 %	710rpm	710rpm	116, 376	85, 596	5, 184	2, 916	4, 865	24, 939. 349
D480-04-16	4 連	6948 1%	710rpm	710rpm	232, 753	171, 192	5, 184	2, 916	9, 460	52, 707. 071
D480-06-24	6 連	10422 ¦ %	710rpm	710rpm	349, 130	256, 789	5, 184	2, 916	14, 055	83, 192. 622
D480-08-32	8連	13896 የ %	710rpm	710rpm	465, 507	342, 385	5, 184	2, 916	18, 650	115, 345. 083
D480-10-40	10連	17370 የጄ	710rpm	710rpm	581, 884	427, 981	5, 184	2, 916	23, 245	152, 921. 193
D480-12-48	12連	20844 %	710rpm	710rpm	698, 260	513, 578	5, 184	2, 916	27, 840	188, 006. 224
D480-14-56	14連	24318 1%	710rpm	710rpm	814, 637	599, 174	5, 184	2, 916	32, 435	224, 993. 502
D480-16-64	16連	27792 ነ %	710rpm	710rpm	931, 014	684, 770	5, 184	2, 916	37, 030	259, 043. 796
D480-18-72	18連	31266 %	710rpm	710rpm	1,047,391	770, 367	5, 184	2, 916	41,625	303, 744. 559
D480-20-80	20連	34740 %	710rpm	710rpm	1, 163, 768	855, 963	5, 184	2, 916	46, 220	350, 873. 756
D480-22-88	22連	38214 ¦ %	710rpm	710rpm	1, 280, 145	941, 560	5, 184	2, 916	50, 815	401, 661. 575
D480-24-96	24連	41688 1%	710rpm	710rpm	1, 396, 521	1, 027, 156	5, 184	2, 916	55, 410	451, 869. 448

13-7 ボア600ディーゼルエンジン (シリンダ径=600mm×行程=1609.43mm、ボア比=2.68、圧縮比=24.74) 図表15にボア600ディーゼルエンジンの諸元を示します。

(図表15)

製品コード	構成	排気量	連続最大回転数	最大回転数	出力(馬力)	出力(KW)	幅(mm)	高さ(mm)	長さ(mm)	質量(kg)
D600-01-04	基本	3640 %	540rpm	540rpm	92, 681	68, 168	6, 860	3, 840	3, 178	24, 467. 959
D600-02-08	2 連	7280 ¦%	540rpm	540rpm	185, 363	136, 337	6, 860	3, 840	6, 011	50, 873. 562
D600-04-16	4連	14560 %	540rpm	540rpm	370, 727	272, 674	6, 860	3, 840	11, 662	109, 561. 707
D600-06-24	6 連	21840 %	540rpm	540rpm	556, 091	409, 011	6, 860	3, 840	17, 313	172, 824. 256
D600-08-32	8連	29120 %	540rpm	540rpm	741, 455	545, 348	6, 860	3, 840	22, 964	240, 123. 393
D600-10-40	10連	36400 ነ %	540rpm	540rpm	926, 819	681, 685	6, 860	3, 840	28, 615	310, 660. 832
D600-12-48	12連	43680 %	540rpm	540rpm	1, 112, 183	818, 022	6, 860	3, 840	34, 266	382, 042. 325
D600-14-56	14連	50960 ነ %	540rpm	540rpm	1, 297, 547	954, 359	6, 860	3, 840	39, 917	456, 177. 275
D600-16-64	16連	58240 ነ %	540rpm	540rpm	1, 482, 911	1,090,696	6, 860	3, 840	45, 568	531, 402. 078
D600-18-72	18連	65520 ነ %	540rpm	540rpm	1, 668, 275	1, 227, 033	6, 860	3, 840	51, 219	624, 066. 534
D600-20-80	20連	72800 ነ %	540rpm	540rpm	1, 853, 638	1, 363, 370	6, 860	3, 840	56, 870	720, 844. 992
D600-22-88	22連	80080 %	540rpm	540rpm	2, 039, 002	1, 499, 707	6, 860	3, 840	62, 521	823, 472. 042
D600-24-96	24連	87360 👯	540rpm	540rpm	2, 224, 366	1, 636, 044	6, 860	3, 840	68, 172	928, 996. 920

- 14. エンジンの特徴・構成・比較・活用について
 - 14-1 ボア44ガソリンエンジン(シリンダ径=44mm×行程=82.161mm、ボア比=1.867、圧縮比=10.54)
 - ■エンジンの特徴

超小型・超軽量・高性能・高効率・低燃費・低振動・低騒音・耐久性抜群

■構成について

単体~14連構成:重量=5.4~178.6kg、出力=113~2890馬力、構成は、単体・基本・基本×連数で、連数は最大14連となります。

- ■標準的なガソリンエンジンとの比較
- ●単体構成:排気量=500cc、重量=5.4kg、出力=113馬力

標準的1500ccガソリンエンジン(重量110kg)と出力性能が同等なので、重量が20分の1になります。

★製造時の使用電力を95%程度削減しますので、製品単価を大幅に削減可能になり、二酸化炭素の排出も大幅に削減します。

●基本構成:排気量=1000cc、重量=10.5kg、出力=206馬力

標準的3000ccガソリンエンジン(重量270kg)と出力性能が同等なので、重量が25分の1になります。

★製造時の使用電力を96%程度削減しますので、製品単価を大幅に削減可能になり、二酸化炭素の排出も大幅に削減します。

- ■自動車用エンジンとしての活用
- ●単体構成:排気量=500cc、重量=5.4kg、出力=113馬力

標準的な1500cc自動車の車体重量を30%以上低減とエンジン効率を30%以上向上することにより、燃費を50%以上削減します。

★走行時の燃費と二酸化炭素の排出を50%以上削減します。

●基本構成:排気量=1000cc、重量=10.5kg、出力=206馬力

標準的な3000cc自動車の車体重量を40%以上低減とエンジン効率を35%以上向上することにより、燃費を60%以上削減します。

★走行時の燃費と二酸化炭素の排出を60%以上削減します。

●適用自動車の種類

軽自動車、普通自動車、スポーツカー、HV、PHEV、EVの補助電源

- ■航空機用エンジンとしての活用
 - ●ガスタービンエンジン(ターボプロップエンジン・ターボシャフトエンジン)との比較

単体~14連構成:重量=5.4~178.6 kg、出力=113~2890馬力、パワーウエイトレシオ=16.2~20.9 馬力/kg

熱効率が22%程度から55%以上、巡航速度が低速回転(ガスタービンエンジンは低速回転にならない)になりますから、燃費を90%以上削減します。

航空機エンジンは高価ですが、極めて安価になりますので経済性に優れます。

航空機エンジンは騒音対策に苦慮しますが、消音装置により騒音はなくなります。

航空機エンジンは高速回転ですが、低速回転になり取扱いが容易になります。

航空機エンジンは耐久性に問題がありますが、耐久性が著しく向上します。

★航行時の燃費と二酸化炭素の排出を90%以上削減します。

●適用航空機の種類

ヘリコプター、軽飛行機、小型飛行機

■空飛ぶ車・ドローンの動力電源としての活用

シリーズハイブリッドエンジン出力=303kw(2連構成相当)~2428kw(16連構成相当)

●空飛ぶ車の基本性能:最大飛行高度=2000m、最高速度=550km/h、巡航速度=350km/h、航続距離=5250km

- 最大離陸重量=1030~8255kg、ペイロード=280kg(定員4人)~2560kg(定員32人)、燃料=150~1200kg

● ドローンの基本性能:最大飛行高度=1000m、最高速度=300km/h、巡航速度=200km/h、航続距離=2000km 最大離陸重量=1030~8255kg、ペイロード=400kg~3200kg、燃料=100~800kg

燃費:空飛ぶ車=5250km航行で50%/人、ドローン=2000km航行で0.333%/kg

※空気重量=1.199g(気圧=1013Pa、気温=20度、湿度=50%)/1000cc、空燃比=14.7:1、

ガソリン=0.08156g/1000cc、上昇時=8000rpm、巡航時=2000rpmで計算

- ■船用エンジンとしての活用
 - ●適用船の種類

モーターボート、高速船、漁業船

- ■汎用エンジンとしての活用
- ●活用する種類

小型発電機、小型農業機械、耕運機、ガスヒートポンプ

- 14-2 ボア60ディーゼルエンジン(シリンダ径=60mm×行程=160.487mm、ボア比=2.674、圧縮比=24.276)
 - ■エンジンの特徴

超小型・超軽量・高性能・高効率・低燃費・低振動・低騒音・耐久性抜群

■構成について

単体~20連構成:重量=22~1150kg、出力=450~1万6118馬力、構成は、単体・基本・基本×連数で、連数は最大20連となります。

- ■標準的なディーゼルエンジンとの比較
- ●単体構成:排気量=1815cc、重量=22kg、出力=450馬力、パワーウエイトレシオ=20.454馬力/kg

標準的9800ccディーゼルエンジン(重量960kgで370馬力)のパワーウエイトレシオが0.385馬力/kgになるので、パワーウエイトレシオが53倍になり、 重量が50分の1以下になります。

★製造時の使用電力を98%程度削減しますので、製品単価を大幅に削減可能になり、二酸化炭素の排出も大幅に削減します。

- ■大型乗用車・バストラック・スーパースポーツカー用エンジンとしての活用
 - ●単体~2連構成:排気量=1815~7260cc、重量=22~89kg、出力=450~1611馬力

標準的な大型乗用車の車体重量を30%以上低減とエンジン効率を30%以上向上することにより、燃費を50%以上削減します。

バストラックでも車体重量を10%以上低減とエンジン効率を30%以上向上するこにより、燃費を30%以上削減します。

★走行時の燃費と二酸化炭素の排出を30~50%削減します。

★エンジンが超軽量になるので、バストラックでもHV、PHEV、EVの補助電源として活用可能になります。

- ■船舶用エンジンとしての活用
- ●基本~8連構成:重量=43~397kg、出力=805~6447馬力

船舶用850~6500馬力ディーゼルエンジン(重量6800~62000kg)と出力性能が同等なので、重量が150分の1程度になります。

★製造時の使用電力を99%以上削減しますので、製品単価を大幅に削減可能になり、二酸化炭素の排出も大幅に削減します。

★航行速度(エンジン重量が40分の1で出力が3.5倍で速度が1.5倍になる)の向上により、航行時間短縮と航行燃費削減になりますので、経費と燃費を大幅に削減して、 二酸化炭素の排出も大幅に削減します。

★ねじり振動が殆んど発生しません(4連以上なら発生しない)ので、中間軸は不要になります。

●適用船舶の種類

小型~中型船舶

- ■航空機用エンジンとしての活用
- ●ガスタービンエンジン(ターボプロップエンジン・ターボシャフトエンジン)との比較

単体~8 連構成: 重量= 2 2 ~ 3 9 7 kg、出力= 4 5 0 ~ 6 4 4 7 馬力

熱効率が25%程度から60%以上、巡航凍度が低凍回転(ガスタービンエンジンは低凍回転にならない)になりますから、燃費を90%以上削減します。

航空機エンジンは高価ですが、極めて安価になりますので経済性に優れます。

航空機エンジンは騒音対策に苦慮しますが、消音装置により騒音はなくなります。

航空機エンジンは高速回転ですが、低速回転になり取扱いが容易になります。

航空機エンジンは耐久性に問題がありますが、耐久性が著しく向上します。

★航行時の燃費と二酸化炭素の排出を90%以上削減します。

●航空機の種類

小型~大型へリコプター、小型~中型旅客機

■次世代航空機(垂直離着陸機)用エンジンとしての活用

基本性能:上昇速度50km/時、巡航高度=9000m、巡航速度=750km/時、上昇時=4700rpm、巡航時=2300rpm

●次世代航空機A:動力システム=2連×2×2基=800馬力×8連相当=6400馬力、最大離陸重量=16トン

機体=10トン、燃料=1トン、ペイロード=5トン(定員50人)、航続距離=9000km

●次世代航空機B:動力システム=4連×2×2基=800馬力×16連相当=1万2800馬力、最大離陸重量=32トン

機体=17トン、燃料=3トン、ペイロード=12トン(定員100人)、航続距離=1万3500km

●次世代航空機C:動力システム=4連×2×4基=800馬力×32連相当=2万5600馬力、最大離陸重量=64トン

機体=34トン、燃料=6トン、ペイロード=24トン(定員200人)、航続距離=1万3500km

●次世代航空機D:動力システム=4連×2×8基=800馬力×64連相当=5万1200馬力、最大離陸重量=128トン

機体=68トン、燃料=12トン、ペイロード=48トン(定員400人)、航続距離=1万3500km

- ■建設機械用エンジンとしての活用
 - ●適用建設機械の種類

ブルトーザー、クレーン

■発電用エンジン(ガスエンジン)として活用

ガスエンジンコージェネシステムとしても活用可能

非常用発電・島諸部発電

- ■軍需用エンジンとしての活用
 - ●陸上用として、戦車・装甲車・特殊車両のエンジンを超軽量化・超高出力化して、速度・走行距離を2倍以上にすることが可能になります。
- ●海洋用として、潜水艦・小型艦艇のエンジンを超軽量化・超高出力化して、速度・航行距離を2倍以上することが可能になります。
- ●航空用として、小型~中型輸送機、哨戒機
- 14-3 ボア90ディーゼルエンジン (シリンダ径=90mm×行程=240.15mm、ボア比=2.66、圧縮比=24.8)
 - ■エンジンの特徴

超小型・超軽量・高性能・高効率・低燃費・低振動・低騒音・耐久性抜群

■構成について

基本~22連構成:重量=129~3979kg、出力=1901~4万1833馬力、構成は、基本と基本×連数で、連数は最大22連となります。

- ■船舶用エンジンとしての活用
- ●基本~8連構成:重量=129~1192kg、出力=1901~1万5212馬力

船舶用2000~1万6000馬力ディーゼルエンジン(重量18000~150000kg)と出力性能が同等なので、重量が125分の1以下になります。

★製造時の使用電力を99%以上削減しますので、製品単価を大幅に削減可能になり、二酸化炭素の排出も大幅に削減します。

★航行速度(エンジン重量が30分の1で出力が3.5倍で速度が1.5倍になる)の向上により、航行時間短縮と航行燃費削減になりますので、経費と燃費を大幅に削減して、 二酸化炭素の排出も大幅に削減します。

★ねじり振動が殆んど発生しません(4連以上なら発生しない)ので、中間軸は不要になります。

●適用船舶の種類

中型~大型船舶

- ■航空機用エンジンとしての活用
- ●航空機ジェットエンジンとの比較

基本~8連構成:重量=129~1192kg、出力=1901~1万5212馬力

熱効率が33%程度から60%以上、巡航速度が低速回転(ジェットエンジンは低速回転にならない)になりますから、燃費を90%以上削減します。

航空機エンジンは高価ですが、極めて安価になりますので経済性に優れます。

航空機エンジンは騒音対策に苦慮しますが、消音装置により騒音はなくなります。

航空機エンジンは高速回転ですが、低速回転になり取扱いが容易になります。

航空機エンジンは耐久性に問題がありますが、耐久性が著しく向上します。

★航行時の燃費と二酸化炭素の排出を90%以上削減します。

●航空機の種類

中型へ超大型へリコプター、中型~大型旅客機

■次世代航空機(垂直離着陸機)用エンジンとしての活用

基本性能:上昇速度50km/時、巡航高度=9000m、巡航速度=750km/時、上昇時=3300rpm、巡航時=1600rpm

●次世代航空機E:動力システム=4連×2×2基=1900馬力×16連相当=3万400馬力、最大離陸重量=76トン

機体=36トン、燃料=10トン、ペイロード=30トン(定員200人)、航続距離=1万9500km

●次世代航空機F:動力システム=4連×2×4基=1900馬力×32連相当=6万800馬力、最大離陸重量=152トン

機体=72トン、燃料=20トン、ペイロード=60トン(定員400人)、航続距離=1万9500km

●次世代航空機G:動力システム=4連×2×8基=1900馬力×64連相当=12万1600馬力、最大離陸重量=304トン 機体=144トン、燃料=40トン、ペイロード=120トン(定員800人)、航続距離=1万9500km

■発電用エンジン(ガスエンジン)として活用

ガスエンジンコージェネシステムとしても活用可能

非常用発電 · 鳥諸部発電

- 軍需用エンジンとしての活用
- ●陸上用として、戦車・装甲車・特殊車両のエンジンを超軽量化・超高出力化して、速度・走行距離を2倍以上にすることが可能になります。
- ●海洋用として、潜水艦・小型~中型艦艇のエンジンを超軽量化・超高出力化して、速度・航行距離を2倍以上にすることが可能になります。
- ●航空用として、大型輸送機、大型哨戒機

- 14-4 ボア160ディーゼルエンジン(シリンダ径=160mm×行程=401.02mm、ボア比=2.5、圧縮比=24.66)
 - ■エンジンの特徴

超小型・超軽量・大出力・高性能・高効率・低燃費・低振動・低騒音・耐久性抜群

■構成について

基本~22連構成:重量=0.542~17.475トン、出力=6291~13万8423馬力、構成は、基本と基本×連数で、連数は最大22連となります。

- ■世界最大級ディーゼルエンジンとの比較
- ●18連:重量=13.552トン、出力=11万3255馬力、パワーウエイトレシオ=8.357馬力/kg 現在、世界最大級ディーゼルエンジンは、重量=2320トン、出力=11万2085馬力、パワーウエイトレシオ=0.048馬力/kgなので、パワーウエイトレシオが 174倍になり、重量が170分の1以下になります。

★製造時の使用電力を99%以上削減しますので、製品単価を大幅に削減可能になり、二酸化炭素の排出も大幅に削減します。

- ■船舶用エンジンとしての活用
- ●大型船舶のエンジンは、超ロングストロークによる熱効率の優位性と大出力により、クロスヘッドを採用した2ストロークディーゼルエンジンが独占しています。 独占要因は、クロスヘッドで超ロングストローク化による熱効率の向上と2サイクル化による大出力になる利点があります。
- ●基本~6連構成:重量=0. 542~3. 749トン、出力=6291~3万7751馬力

大型船舶用 2 サイクル 6 9 6 0 ~ 3 万 9 6 0 0 馬力ディーゼルエンジン(重量が 8 6 ~ 8 4 5 トン)と出力性能が同等なので、重量が 1 4 0 分の 1 ~ 2 1 0 分の 1 程度になります。

- ★製造時の使用電力を99%以上削減しますので、製品単価を大幅に削減可能になり、二酸化炭素の排出も大幅に削減します。
- ★航行速度(エンジン重量が40分の1で出力が3.5倍で速度が1.5倍になる)の向上により、航行時間短縮と航行燃費削減になりますので、経費と燃費を大幅に削減して、 二酸化炭素の排出も大幅に削減します。
- ★ねじり振動が殆んど発生しません(4連以上なら発生しない)ので、中間軸は不要になります。
- ★世界物流の90%を担う海上物流の経費・燃費・二酸化炭素排出を大幅削減します。
- ●適用船舶の種類

大型船舶

- ■航空機用エンジンとしての活用
- ●航空機ジェットエンジンとの比較

基本~8連構成: 重量=0.542~5.194トン、出力=6291~5万335馬力

熱熱効率が33%程度から60%以上、巡航速度が低速回転(ジェットエンジンは低速回転にならない)になりますから、燃費を90%以上削減します。

航空機ジェットエンジンは高価ですが、極めて安価になりますで経済性に優れます。

航空機ジェットエンジンは騒音に苦慮しますが、消音装置により騒音はなくなります。

航空機ジェットエンジンは高速回転ですが、低速回転になり取扱いが容易になります。

航空機ジェットエンジンは耐久性に問題がありますが、耐久性が著しく向上します。

★航行時の燃費と二酸化炭素の排出を95%以上削減します。

●航空機の種類

超大型ヘリコプター、超大型旅客機

■次世代航空機(垂直離着陸機)用エンジンとしての活用

基本性能:上昇速度50km/時、巡航高度=9000m、巡航速度=750km/時、上昇時=2050rpm、巡航時=1000rpm

●次世代航空機H:動力システム=4連×2×2基=6250馬力×16連相当=10万馬力、最大離陸重量=250トン

機体=75トン、燃料=25トン、ペイロード=150トン、航続距離=1万5000km

●次世代航空機I:動力システム=4連×2×4基=6250馬力×32連相当=20万馬力、最大離陸重量=500トン

機体=150トン、燃料=50トン、ペイロード=300トン、航続距離=1万5000km

●次世代航空機」:動力システム=6連×2×6基=6250馬力×72連相当=45万馬力、最大離陸重量=1125トン

機体=250トン、燃料=125トン、ペイロード=750トン、航続距離=1万6500km

●次世代航空機K:動力システム=6車×2×12基=6250馬力×144車相当=90万馬力、最大離陸重量=2250トン

機体=500トン、燃料=250トン、ペイロード=1500トン、航続距離=1万6500km

●次世代航空機L:動力システム=6連×2×24基=6250馬力×288連相当=180万馬力、最大離陸重量=4500トン

機体=750トン、燃料=375トン、ペイロード=3000トン、航続距離=1万6500km

■発電用エンジン(ガスエンジン)として活用

ガスエンジンコージェネシステムとしても活用可能

非常用発電・島諸部発電

- 軍需用エンジンとしての活用
- ●海洋用として、潜水艦・中型艦艇のエンジンを超軽量化・超高出力化して、速度・航行距離を2倍以上することが可能になります。
- ●将来兵器として、レールガン電源に最適

- 14-5 ボア320ディーゼルエンジン(シリンダ径=320mm×行程=802.05mm、ボア比=2.5、圧縮比=24.86)
 - ■エンジンの特徴

超小型・超軽量・大出力(56万8779馬力)・高性能・高効率・低燃費・低振動・低騒音・耐久性抜群

■構成について

基本~22連構成:重量=3.785~127.222トン、出力=2万5853~56万8779馬力、構成は、基本と基本×連数で、連数は最大22連となります。

- ■世界最大級ディーゼルエンジンとの比較
- 4 連: 重量= 1 6.762トン、出力= 10万3414馬力、パワーウエイトレシオ= 6.170馬力/kg 現在、世界最大級ディーゼルエンジンは、重量= 2320トン、出力= 11万2085馬力、パワーウエイトレシオ= 0.048馬力/kgなので、パワーウエイトレシオが128倍になり、重量が125分の1以下になります。

★製造時の使用電力を99%以上削減しますので、製品単価を大幅に削減可能になり、二酸化炭素の排出も大幅に削減します。

- ■船舶用エンジンとしての活用
 - ●超大型船舶のエンジンは、超ロングストロークによる熱効率の優位性と大出力により、クロスヘッドを採用した2ストロークディーゼルエンジンが独占しています。 独占要因は、クロスヘッドで超ロングストローク化による熱効率の向上と2サイクル化による大出力になる利点があります。
- ●基本~4連構成:重量=3.785~16.762トン、出力=2万5853~10万3414馬力

超大型船舶用2サイクル2万7080~11万7398馬力ディーゼルエンジン(重量が395~2320トン)と出力性能が同等なので、 重量が100分の1~125分の1程度になります。

★製造時の使用電力を99%以上削減しますので、製品単価を大幅に削減可能になり、二酸化炭素の排出も大幅に削減します。

★航行速度(エンジン重量が30分の1で出力が3.5倍で速度が1.5倍になる)の向上により、航行時間短縮と航行燃費削減になりますので、経費と燃費を大幅に削減 して、二酸化炭素の排出も大幅に削減します。

★ねじり振動が殆んど発生しません(4連以上なら発生しない)ので、中間軸は不要になります。

★世界物流の90%を担う海上物流の経費・燃費・二酸化炭素排出を大幅削減します。

●適用船舶の種類

超大型船舶

■発電用エンジン(ガスエンジン)としての活用

ガスエンジンコージェネシステムとしても活用可能

中規模発電

★排気エネルギーを利用した二酸化炭素除去装置により、二酸化炭素の排出を80%以上削減可能になります。

- ■軍需用エンジンとしての活用
- ●海洋用として、潜水艦・大型艦艇のエンジンを超軽量化・超高出力化して、速度・航行距離を2倍以上することが可能になります。
- ●将来兵器として、レールガン電源に最適

- 14-6 ボア480ディーゼルエンジン (シリンダ径=480mm×行程=1200.18mm、ボア比=2.5、圧縮比=24.86)
 - ■エンジンの特徴

超小型・超軽量・大出力(139万6521馬力)・高性能・高効率・低燃費・低振動・低騒音・耐久性抜群

■構成について

基本~24連構成:重量=11. 852~451. 869トン、出力=5万8188~139万6521馬力、構成は、基本と基本×連数で、連数は最大24連となります。

- ■世界最大級ディーゼルエンジンとの比較
- 2 連:重量= 2 4.939トン、出力= 11万6376馬力、パワーウエイトレシオ= 4.666馬力/kg 現在、世界最大級ディーゼルエンジンは、重量= 2320トン、出力= 11万2085馬力、パワーウエイトレシオ= 0.048馬力/kgなので、パワーウエイトレシオが97倍になり、重量が95分の1程度になります。
- ★製造時の使用電力を95%以上削減しますので、製品単価を大幅に削減可能になり、二酸化炭素の排出も大幅に削減します。
- ■船舶用エンジンとしての活用
 - ●超大型船舶のエンジンは、超ロングストロークによる熱効率の優位性と大出力により、クロスヘッドを採用した2ストロークディーゼルエンジンが独占しています。 独占要因は、クロスヘッドで超ロングストローク化による熱効率の向上と2サイクル化による大出力になる利点があります。
 - ●基本~2連構成:重量=11.852~24.939トン、出力=5万8188~11万2085馬力

超大型船舶用2サイクル5万9387~11万7398馬力ディーゼルエンジン(重量が1170~2320トン)と出力性能が同等なので、重量が95分の1程度になります。

- ★製造時の使用電力を95%以上削減しますので、製品単価を大幅に削減可能になり、二酸化炭素の排出も大幅に削減します。
- ★航行速度(エンジン重量が12分の1で出力が8倍で速度が2倍になる)の向上により、航行時間短縮と航行燃費削減になりますので、経費と燃費を大幅に削減して、 二酸化炭素の排出も大幅に削減します。
- ★ねじり振動が殆んど発生しません(4連以上なら発生しない)ので、中間軸は不要になります。
- ★排水量50万トンクラスの超大型船舶でも高速運行が可能になります。
- ★世界物流の90%を担う海上物流の経費・燃費・二酸化炭素排出を大幅削減します。
- ●適用船舶の種類

超大型船舶

- ■発電用エンジン(ガスエンジン)としての活用
 - ガスエンジンコージェネシステムとしても活用可能

大規模発電

- ★排気エネルギーを利用した二酸化炭素除去装置により、二酸化炭素の排出を85%以上削減可能になります。
- ■軍需用エンジンとしての活用
- ●海洋用として、大型艦艇・空母のエンジンを超軽量化・超高出力化して、速度・航行距離を2倍以上することが可能になります。
- ●将来兵器として、レールガン電源に最適

- 14-7 ボア600ディーゼルエンジン(シリンダ径=600mm×行程=1609.43mm、ボア比=2.68、圧縮比=24.74)
- ■エンジンの特徴

超小型・超軽量・大出力(222万4366馬力)・高性能・高効率・低燃費・低振動・低騒音・耐久性抜群

■構成について

基本~24連構成:重量=24.468~928.997トン、出力=9万2681~222万4366馬力、構成は、基本と基本×連数で、連数は最大24連となります。

- ■世界最大級ディーゼルエンジンとの比較
- 2 連:重量=50.874トン、出力=18万5363馬力、パワーウエイトレシオ=3.644馬力/kg 現在、世界最大級ディーゼルエンジンは、重量=2320トン、出力=11万2085馬力、パワーウエイトレシオ=0.048馬力/kgなので、パワーウエイトレシオが76倍になり、重量が75分の1以下になります。

★製造時の使用電力を98%以上削減しますので、製品単価を大幅に削減可能になり、二酸化炭素の排出も大幅に削減します。

- ■船舶用エンジンとしての活用
 - ●超大型船舶のエンジンは、超ロングストロークによる熱効率の優位性と大出力により、クロスヘッドを採用した2ストロークディーゼルエンジンが独占しています。 独占要因は、クロスヘッドで超ロングストローク化による熱効率の向上と2サイクル化による大出力になる利点があります。
 - 2連:重量=50.874トン、出力=18万5363馬力、パワーウエイトレシオ=3.644馬力/kg 超大型船舶用2サイクル11万7398馬力ディーゼルエンジン(重量が2320トンでパワーウエイトレシオ=0.048馬力/kg)と出力性能が同等なので、 重量が75分の1程度になります。
 - ★製造時の使用電力を98%以上削減しますので、製品単価を大幅に削減可能になり、二酸化炭素の排出も大幅に削減します。
 - ★航行速度(エンジン重量が10分の1で出力が8倍で速度が2倍になる)の向上により、航行時間短縮と航行燃費削減になりますので、経費と燃費を大幅に削減して、 二酸化炭素の排出も大幅に削減します。
 - ★ねじり振動が殆んど発生しません(4連以上なら発生しない)ので、中間軸は不要になります。
 - ★排水量80万トンクラスの超大型船舶でも高速運行が可能になります。
 - ★世界物流の90%を担う海上物流の経費・燃費・二酸化炭素排出を大幅削減します。
- ●適用船舶の種類

超大型船舶

- ■発電用エンジン(ガスエンジン)としての活用
 - ガスエンジンコージェネシステムとしても活用可能

超大規模発電

- ★排気エネルギーを利用した二酸化炭素除去装置により、二酸化炭素の排出を90%以上削減可能になります。
- ■軍需用エンジンとしての活用
- ●海洋用として、超大型艦艇・空母のエンジンを超軽量化・超高出力化して、速度・航行距離を2倍以上することが可能になります。
- ●将来兵器として、レールガン電源に最適。

15. 物流について

物流は、輸送システムにより行われ、その中核を担う運送機械には、数多くのエンジンが使用されております。

そのエンジンを小型化・大出力化・省燃費化は、極めて重要な問題になっております。

- ①次世代航空機(垂直離着陸機)により、大量物資を道路を使用せずに運搬可能になりますので、燃料費・人件費の削減による物流コストが大幅に削減されます。
- ②陸上輸送は、ディーゼルエンジンの超軽量化と道路状況が大幅に改善されますので、燃料費の大幅削減により、物流コストが大幅に削減されます。
- ③海上輸送は、ディーゼルエンジンの超大型化・超軽量化により航海速度が 2 倍(エンジン出力が 8 倍以上)以上になり、運航日数が大幅に短縮されて、燃料費・人件費の削減 による物流コストが大幅に削減されます。
- ①~③により、二酸化炭素の排出が大幅に削減されます。

16. 環境問題について

近年、二酸化炭素の大量排出が地球温暖化の原因と言われています。

また、持続可能な開発目標(SDGs)が国連サミットで採択されました。

16-1 生産財

エンジンの超小型化(★1)により生産財が大幅に削減されますので、工場での電力が大幅に削減されます。

ゆえに、自然エネルギーでない発電(★2)の二酸化炭素の排出が大幅に削減されます。

★1ガソリンエンジンでは、一般的ガソリンエンジンの20分の1~25分の1、ディーゼルエンジンでは、一般的ディーゼルエンジンの50分の1~210分の1と超小型 になります。

★2ディーゼルエンジン発電においては、有り余るパワーと排出エネルギーにより、二酸化炭素除去装置で二酸化炭素を80~90%以上除去可能になります。

16-2 省燃費

エンジンの高効率化(★3)により、自動車・バス・トラック・小型船・船舶・飛行機・航空機・農業機械・建設機械・発電の運転時における燃料が大幅に削減されます。 ★3ガソリンエンジンでは熱効率55%以上、ディーゼルエンジンでは熱効率60%以上になります。

16-3 地球環境

- ①次世代航空機(垂直離着陸機)により、砂漠を緑地化して農業・林業・牧畜により、食料資源の増大と地球環境を改善します。
- ②次世代航空機(垂直離着陸機)により、水力発電・風力発電・太陽光発電を加速して、自然エネルギーの増大を実現します。
- ③次世代航空機(垂直離着陸機)により、場防・ダム建設を加速して、治水・防水を行います。
- ④次世代航空機(垂直離着陸機)により、大規模火災の消火を迅速に行います。
- ⑤次世代航空機(垂直離着陸機)により、各種建設工事の生産性を高めて、大幅な工期短縮による燃料費削減とコスト削減を実現します。
- ①~⑤により、地球環境の改善・農業資源の増強(食糧危機解消)・二酸化炭素排出量の大幅削減を計り、カーボンニュートラルを早期に実現します。

17. まとめ

1876年の4ストロークガソリンエンジン(オットー機関)以降に様々な改良により、エンジン技術は飽和状態になっております。

そこで、エンジンの仕組みを根源的に改良することで、次世代エンジン技術の有用性を確認されることになると、強く確信しております。

それゆえに、次世代エンジン技術を世界の多くの企業にライセンス供与することで、世界を有益な方向に変えられることを、強く確信しております。

一明日に挑む技術創造企業一日本ソフトウエアアプローチ

株式会社日本ソフトウェアアプローチ https://www.jsain.co.jp/